
Chains of motley gems—and their Wiener indices 

Bo-Yin Yang and Yeong-Nan Yeh* 

*In homage of my beloved late Teresa Teng who has 
supported me spiritually through years 

Abstract. Looking into the problem of determining the Wiener indices of mixed polygonal 
chains, we find general recursion algorithms applicable to all polygonal chains, yet simple 
enough for hand calculation. For chains composed of even-sided polygons only, we derive 
pithy explicit formulas. In the process, we also find simpler proofs for previously known 
formulas. 
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1. History 
Definition 1. For a connected graph G = (V, E), and its distance function d : V x 
V ->- N = (0, 1, 2, 3, . . .}, we define the Wiener index: 

W = W(G) = J 2 <*(»' ")• 
|«,n]CV 

For any given point u in V = V(G), we define 

W(ulG) = ^d(u,v), 
veV 

sometimes called the partial Wiener index of u (with respect to G). 

In short, the Wiener index of a graph is the sum of distances between pairs of its 
vertices. Obviously we have W = \ H u e v W(«|G). 

This quantity was first used in 1947 by Harold Wiener in his seminal article [35] 
(and used in a later series of articles, see [36]—[38]) where he came up with this 
surprisingly good approximation for the boiling points of high alkanes: 

b.p. « a W + ßwj + y, 
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with a, jS, y being empirical constants, W the Wiener index of the molecular graph 
of the alkane, and wj, the 'path number' (number of vertex pairs 3 apart in the graph). 

After Wiener, applications of graph theory to chemistry lay dormant for a decade or 
so, and not until the concept was rediscovered in 1962 and used to estimate the critical 
constants of alkanes did the Wiener index really resurface. Wiener's original definition 
only applied to alkanes (the total number of carbon-carbon bonds between all pairs of 
carbon atoms), but it is easy to generalize to all molecular graphs. Eventually, Hosoya 
pointed out [13] in 1971 the usefulness of treating the Wiener index as a quantity 
associated with a molecular graph only and basically gave the present definition. 

In the '70s and '80s, numerous studies of the Wiener index were undertaken, 
both from the chemical and mathematical angles, and it is surprising therefore that 
a bewildering array of names for this concept had been used as no one seems to 
have bothered checking the literature before inventing his own terminology. Those 
with a graph theory bent called it the total transmission like Soltys (see [33]) or 
gross(total) status like Harary ([11] & [12]); some like Plesnik [25] and Rouvray 
[27]—[30] used descriptions, (sum of distances and sum of the distance matrix elements 
resp.), obviously both being twice the Wiener index; also used are total distance 
(Mohar [22]) and total weight (Teh and Shee, [34]). However 'Wiener index' or 
'Wiener number' seems to have stuck as the most popular. 

Eventually, the Wiener index W became one of the best (also likely the most 
often used) descriptors of molecular shape deducible from the molecular graph. We 
recommend, in addition to those specifically referred to below, [1], [3], [5], [17], [20], 
[21], [24], and [31], for those interested. Cites to most of the chemistry can also be 
found in the survey [8]. 

It should be fairly easy to see that the Wiener index of the molecular graph provides 
a measure of the compactness and the extent of branching in the molecule. Indeed, 
those physical and chemical properties that depends primarily on the intermolecular 
forces1 (whose primary determining factor is the molecular volume-to-surface ratio) 
or the extent of branching in the skeleton are usually well linearly correlated with W. 
For most families of hydrocarbons whether cyclic or acyclic, aromatic or aliphatic, 
these form an impressive list. As summarized in [2], these include heats of formation, 
atomization, isomerization, and vaporization; density, boiling point, critical pressure 
and temperature, refractive index, surface tension, velocity of sound propagation, and 
viscosity. In polymer chemistry, the Wiener index have been used successfully as 
predictors for physical properties such as melting points and others such as jr-electron 
energies in conjugated polymers. 

Since both pharmacology and material science often involve physical and chemi-
cal properties having to do with intermolecular forces, it is not surprising that Wiener 

'The fact that W is correlated with so many physico-chemical properties of hydrophobic molecues 
means that it just has to be a rough measure of intermolecular forces. Recently it was shown that for 
medium-sized hydrocarbons of various families, both of the most widely used measures of intermolec-
ular forces, Pitzer's acentric factor [26] and the Van der Waals a-coefficient have linear correlation 
coefficients higher than 90% to the Wiener index. 



Chains of motley gems—and their Wiener indices 331 

indices also found applications to both fields. For the former, Lukovits showed that 
the Wiener index of certain pharmacologically significant families of compounds has 
very strong correlations and their respectice cytostatic, antihistaminic, and estrogen-
bonding activities; recently, he provided a good estimator of the partition coefficient 
to water for certain compounds (see [18]), a vital parameter in forecasting pharmaco-
logical utility. For the latter, W was recently used to characterize crystal defects and 
stability of lattices. 

Lots of water has passed under the bridge and by now Wiener indices are relatively 
familiar objects to both graph theorists and theoretical chemists, and connections to 
other branches of mathematics have been found (e.g. [32]). Algorithms for computing 
the Wiener index for specific types of graphs are known for some time (see [23] 
for a good summary) and in some specific instances linear-time algorithms can be 
found. However, chemists are more interested in methods that lead to relatively 
simple general expressions for Wiener indices of families of molecules, especially 
that enables calculation by paper-and-pencil. For the case of a tree G = (V, E), 
Wiener [35] himself provided this pretty formula: 

W(G) = £ n i ( « ) n 2 ( « ) , (1.1) 
e&E 

where n\ (e), n2(e) are the number of vertices on either side of edge e. 
Merris and McKay [19] independently came up with another which connects 

Wiener indices to spectura of Laplacian matrices of trees. Let N = | V| and M > 
• • • > kn-i > kn = 0 be the spectrum of the Laplacian matrix L = D — A of the 
graph G, then 

J 1 

Gutman (see [8]) proved yet a third nice formula: 

W ( G ) = ( n + - J 2 ( E ndx)nj(x)nk(x)) , ( 1 . 3 ) 

^ ' de«i>3 \ |> j>k ) 
xeV J 

where n\ > ri2 > • • • are the number of vertices in the components resulting the 
deletion of x from G. 

Other facts about the Wiener indices of trees can be found in [8]. 
For graphs that are not trees (usually representing cyclic molecules), there isn't 

nearly so much in the way of general results aside from the formulas for Wiener indices 
of composite graphs by Gutman and Yeh [10]. Most results have been worked out on 
a case-by-case basis and open problems abound. 

One such had been the computation of Wiener indices of polygonal graphs, espe-
cially chains. For a long time, calculations involve long computer runs that sometimes 
even give the wrong result, and the only noteworthy results were those of Gutman et 
al (see [6] & [7]) on hexagonal chains, which still were not closed-form. Recently, 
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the authors have found closed-form solutions which indeed allow paper-and-pencil 
calculations for hexagonal [16] and pentagonal chains [39] (the latter an entirely open 
problem despite much effort), as well as for regular two-dimensional polygons pat-
terns [15]. Here we give a general closed-form formula for all chains of even-sided 
polygons (Section 2) and demonstrate (via examples) a suitably easy algorithm for 
'straight chains' (Section 3) and from it for any polygonal chain (Section 4). 

2. Finding the Wiener index of a generic even chain 

To begin with, we need to define our terms: 

Definition 2. A motley (polygonal) chain is a graph of concatenated polygons (cycles 
sharing an edge) in which (for the moment) no vertex has degree more than 3. 

Definition 3 (Representation of motley chains). Given n ordered pairs of non-nega-
tive integers S = (a\, b\),..., (an, bn), we create a graph as follows: take the graph 
Pi x Pn (noting it to be composed of n adjacent squares joined up side by side) 
and subdivide the y'-th upper and lower edges by inserting aj and bj extra vertices 
respectively. We will call it the motley chain associated with S and write it as M(S) 
or, when context permits, just S. The Wiener index of the graph M(S) will be denoted 
by W(S). Obviously, as long as two sequences only differ in the first and last pairs 
with the sums a\ + b\ and an + bn identical, the associated graphs will remain the 
same. Hereafter, we will represent such a equivalence class as: 

A motley chain clearly determines its own representation as above, uniquely up to the 
reversal of the order of the sequences, or the exchange of the numbers in each pair 
(both of these being involutions, i.e., at most 4 distinct representations in a group). 

I t H || • • II • 1>-
3 2 1 0 0 1 

- 1 2 
1 1 2 0 1 i • i i » > i 

Figure 1. A "chain of motley gems." 
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Figure 2. An even motley chain. 
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Figures 1 and 2 show how to make the construction as defined above. Thus, the 
work in [16] and [39] handle respectively the cases where each polygon is a hexagon 
and a pentagon (or when each pair of integers (a,-, ) adds up to 2 and 1) respectively. 

In the special cases where each of the polygons has an even number of sides (or 
the each pairs of numbers are of two of the same parity—see Figure 2), there is an 
alternative representation: 

Definition 4 (Alternative representation of even motley chains). We correspond each 
sequence E = ko, {k\, j\), 72 )> • • •, (kn, jn), kn+1> (where for every i we have 
kj e P and _/', e Z, | < kj) with the motley chain M(S), where 

S = E = ¡2(ko ~ 0 7 ^ ~ ! T _ ! t" 7 _ ! 2(&n+i — 1)\ • \ j \ - \ k2 + ... kn + jn-\ ^ 7 

To make the notation more compact, we will also write this as (see Figures 2 and 3) 

E = kQ(ki)h (k2)n ... (kn)]nkn+\ 

and subscript O's, especially when the corresponding ki is 1, will often be omitted as 
-in-well—see Figure 3. We will call K = Yll=o total length of the even motley 

chain. 

This even motley chain is encoded as 
22_ i12_ i l2 + i3 + i13+i112_ i1 and 

is the same as the one just seen: 
I 20200101002 
\ 00002303000 

Figure 3. The last-shown motley chain in the eyes of chemists. 

Using methods reminiscent of those in [ 15], we will first establish a base value from 
which we can evaluate deviations; for even motley chains this base value is obvious— 
it must be the Wiener index of a straight chain. Before we do that, however, we need 
a small lemma 
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Lemma 1. The Wiener index of a chain ofn squares is 

)V((1)") = W(P„+1 x P2) = + l)(n + 3)(2n + 1), 

which differs from the Wiener index of a 2 (n + 1 )-gon (or 2 (n + l)-c>'c/e) by 2(" ̂ ' ) . 

Proof. Theorem 4 of [8] gives the Wiener index for the Cartesian product. That 
W(C2„) = n3 has been known from long ago. • 

Theorem 1 (Straight evens). For a 'straight' even motley chain E, represented as 

E = k0k\k2 ...kn = ¡2(k0 - 1) _ j ^ _ j " ' ^ _ j 2(kn+i - 1 ) j , 

and has among its (n + 2) polygons a total ofn4 squares, n(, hexes, n% octagons, etc. 
and total length K = ("21+2 ' )» we hove as the expression for its Wiener index: 

1 1 " + 1 

W(E) = -(.K + l)(/s: + 3)(2K + 1) + - + 1 )(kj - 1) (2.4) 
3 ;=0 

= ^(/i: + i)(/i: + 3)(2A: + 1 ) + <2-5) 

which is independent of the order in which the polygons are arranged. 

: <&)"* 
Pj-3 Pj-2 ; Pj-1 : Pj : : Pj +1 : Pj+2 

CM : 

Figure 4. Wiener indices of straight even motley chains. 

Proof. We compare the chain E to the even chain 1K (a chain of squares). See Figure 4: 
we can see that for any two vertices u,v € E, either d^(u, v) = d\K (u, v) or u and v 
belong to the same polygon pj in the chain. Ergo: 

W(E) = Y , d 

(U,u}e(f) 
«+1 

= + ^ [dE(u,v)-doK)(u,v)] 
{«.u} 7=0 {u,v}epj 

n+1 
= W{PK+1 xPl) + Yl [W(C2kj+2 - W(Pkj +1 X P2)]. 

j=o 

and the final substitutions follow from the lemma. • 
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Having deduced the base value, we can obtain results for any even motley chain 
by 'straightening' it out in stages! Take any even chain 

E = k0(k\)Ji (k2)n ... (kn)Jnkn+\ 

and define the 'intermediate stages of straightening': 

El = ko{k\)n (k2)n ... (ke)je(ke+\)o(ki.+2)o ... (kn)okn+i-

Obviously, we have 
n 

W ( £ ) = W(£o) - " - (2.6) 
i=i 

and therefore we need only know each W ( £ , _ i ) — W(E, ) in order to find out W(E). 
For convenience, we will use these notations so as to be parallel to the usage of [16] 
and [39]: for each stage of the 'straightening' we mark out the vertices MO and u \, and 
vo, vi,..., v¿ where i is the number of sides of pj, the polygon in question, minus 
three (see Figure 5). The partial Wiener index W(u, , M(S)) is written as Xi(S). T 
will refer to the portion of straight even chain at the tail. 

Segment Tit-

Figure 5. Marking the advance vertices. 

It should be clear that some of the vertices in the 'unstraightened' part of S will 
have shortest paths into T through uo and some through MI; to be quite precise, we 
can draw a figurative border down the middle of the next polygon and everything on 
the same side of u\ will have the minimum distance access route through u\, and 
vice versa, and we will call the first part R+ and the other R-, just to mark them (in 
Figure 6, these are colored light gray and black respectively). It should also be clear 
that there is a total of 2 1 vertices in T, and we label the 'top' half T+ and 
the 'bottom' half T- as in the Figure 5. 
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Vìi 

Figure 6. During the process of straightening! 

We can see from Figure 6 that in fact as far as Wiener indices are concerned, the 
polygon pj itself doesn't matter. Of the portion R remaining unstraightened, we can 
see that when the chain is 'bent' such that T goes into T', each point in R+ gets closer 
to each point in 7 1 by one, and farther away from each point in 7+ by one— for no 
net difference; however, each point in /?_ gets closer to any point in the tail by one. 
Hence, we know that the difference in Wiener indices is x |7*|. Similarly, when 
we rotate T into T", the Wiener index decreases by \R+\ x |T | . 

What about bigger turns? For each move after the first, we have the entire R 
approaching the whole of T and the net decrease in Wiener index is |/?| x | 7 | . Notice 
that bigger turns are impossible for chains of just hexagons (and squares)—this last 
case only become relevant in the case of an octagon or larger. 

The above can be summed up succintly thus: 

Lemma 2. 

W(£,-_!) - W ( £ , ) - + a i f j i > o , 
\T\U-ji-l)\R+\-ji\R-\], i f j i < 0. 

(2.7) 
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Given an even chain £ = ko(ki)jx (fo)^ • • • (kn)j„kn+i of whose j's precisely those 
with the indices ii , 12 , . . . , im are non-zero. We define more notations: 

u-1 
Kt = (mdK0 = 0,) 

h=0 
n+1 

K = £ 
h=it+1 

ri = (2|y,,l - O ^ + s g n O ^ y , ^ , ) ^ . ! . 

Theorem 2 (General evens). 
m 

W ( £ 0 ) - W ( £ ) = 2 £ ^ r / , (2.8) 
/i=i 

where W(Eq) is given by Equation 2.5. 

Proof. In the ie-th stage of 'straightening out', |T| in Equation 2.7 is obviously 2K' t. 
It remains to calculate |/?+| and Again from Figure 6 we can see that |/?|, the 
sum of the two, is 2Kh and the difference is 2Ki - \ \ hence, the smaller of the two is 
Kt — Kt-1 while the larger is Kt + Kt-1. So the difference at this polygon adds up 
to 2K'eTt. • 

Example 1. We tabulate in a table the calculations needed to find the Wiener index 
of the even motley chain shown in Figures 2 and 3. 

h 0 1 2 3 4 5 6 7 8 9 10 11 12 
Top 1 2 0 2 0 0 1 0 1 0 0 2 0 

Bottom 1 0 0 0 0 2 3 0 3 0 0 0 0 
kh 2 2 1 2 1 2 3 1 3 1 1 2 1 
jh 0 -1 0 -1 0 1 1 0 1 0 0 -1 0 
K 2 5 8 10 14 19 
K' 18 15 12 9 5 1 
X 2 7 3 18 24 5 

2rK' 72 210 72 324 240 10 

Table A: Calculating the Wiener index of motley chain in Figures 2 and 3. 

Total length of the chain is K = 22, = 5, n% = 2, so: 

W ( £ 0 ) = ^(23 x 25 x 45) + (5 x 2 + 2 x 8) = 8651, 

W ( £ ) = W(EO) - (72 + 210 + 72 + 324 + 240 + 10) = 7723. 

Corollary 1. Assume that the ki's above comprise «4 ones (squares) and ng twos 
(hexagons) and define its hex-length to be N = ng + we assign to each hex the 
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sum of half the number of squares and the number ofhexs that comes before it in the 
chain (thus, either integer or half-odd) as demonstrated in Figure 7. 

16 

Figure 7. Marking the chain •0n0D21[]2Dl 1 • 1 •2D2D0D2D2nn0002an*. 

Assume B to be the set of numbers assigned to hexes with turns (i.e., represented 
by 2 + i or 2_i) plus the number N — 1. For each i € B, define v (i) to be the next larger 
element in B, and take C to be the elements i ofB such that the ji jv(i) > 0. We further 
define i/r(i) to be v(i) — i for each i that is in B but not in C, and2(N — 1) — v(i) — i 
for i e C. Then we have: 

W(E) = + 1)(2N + 3)(4JV + 1) + 2n6 - 8 
.I'efl 

(2.9) 

This is a direct generalization of Theorem 1 in [16], and almost every single one of its 
consequences hold for square-hex chains without need for extensive modification! 

We note that the notation for hex-chains used in [16] can be carried over with these 
modifications: the numbers 0, 1, 2 will still denote a hex with a left 120 degree turn, 
a straight move, and a right 120 degree turn respectively; a box will denote a square, 
and for hexes at the end (not expressly shown in the notation of [16]) will be denoted 
by a star. 

Example 2. The even motley chain 212q2i 12j2i 112_i 12_i 1 in Figure 8 has 7 hexes 
and 6 squares, thus is '10 hexes long', and can be denoted *nl2D22nD0n0n. The 
calculations needed to find its Wiener index (easily manageable by hand-even the 
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monster chain in Figure 7 is quite doable with paper, pencil and a little patience!) is 
shown below and the reader is invited to compare this with similar calculations in [16]. 

H e x : « 0 3 
2 

5 
2 4 5 7 17 

2 

B • • • • • 

C • • • 

V 4 5 7 17 
2 9 

r/r 23 
2 9 2 5 

2 
l 
2 

m o 
115 
4 3 6 1 0 35 

2 
17 
4 

W = - ( 2 1 x 2 3 x 4 1 ) + 2 x 7 
3 

[ 5 2 3 
- 8 - x — + 4 x 9 + 5 x 2 

12 2 
„ 5 1 7 1 

+ 7 x ^ + ^ r x n 2 2 2 

= 6 6 1 5 - 7 x 
1 9 3 

= 5 8 4 3 

Figure 8. The chain •Dl2n22DD0n0n, otherwise written 
21202i 12]2i 112_i 12-i 1, and its length is N = 10. 

3. Zigzagging chains including odd polygons 

We have seen that chains with only even-sided polygons can be handled comprehen-
sively via Equation 2.8. When the situation involves odd-sided polygons, the situation 
is quite a bit stickier. First of all we need a base value against which Wiener indices of 
chains can be compared, which means a kind of 'standard' chain must be defined— 
as below. 

Definition 5 (Zigzagging chain). A motley chain is said to be straight or zigzagging 
if for one of its representations (as in Definition 3) 5 = (ai, b\),..., (an, b„) the 
set (ai ~ ty)|1 < j < n] is contained in {0,1} or [0, —1}. We will denote 
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by Zn[ tl2 nk(n) the Wiener index of a straight chain consisting of n repetitions of 
polygons of n\,n2,... ,nk sides. A pictorial representation is given in Figure 9: 

\ i x w : i \ \ : 11: x xxn 
Figure 9. A 'straight' motley chain. 

And as the following example will demonstrate, the Wiener index of straight chains 
composed of just odd-sided polygons is relatively straightforward: 

Example 3 (Wiener index of a chain of zigzagging pentagons and septagons). We 
want to find Z$ j(n), the Wiener index of a straight motley chain composed of al-
ternating pentagons and septagons. To do this, we start with a straight chain of n 
decagons, the Wiener index we know from Equation 2.5 to be 

Zw («) = + 1)(4 n + 3)(8n + 1) + 20 n. 

Figure 10 should illustrate our method well. We will subdivide each decagon into a 
pentagon and a septagon starting from one end. Clearly, the distances between the 
vertices which comprise each original decagon changes with the subdivision, as is 
given by the difference (found from Equation 2.8) between the Wiener number of a 
2(m + n)-gon and a (2m + l)-gon fused with a (2n + l)-gon: 

A(m, n) = W(C2m+2n) ~ W«(2m - 3), (2n - 3))) 
= mC 2 ( m + n-1) ) - W(((2m - 4), {In - 4)» 

1 , , 3 
= mn(m +n)~ - (m 2 + nl + 4mn) + - ( m + n) - 1, (3.10) 

so between the Wiener indices of a Decagon (= 125) and a Septagon-Pentagon pair 
(= 107) there is a difference of 18. This difference is the same for each subdivision. 

All the 'circles' marked here are brought closer to. . . 

these 4 circled vertices. 

Figure 10. Obtain the Wiener index of a zigzagging pentra-septa chain 
by subdivision. 

However, this aside, certain vertices on either side of the divide get closer to each 
other as shown in Figure 10. One can observe that the distances between two vertices 
in the graph decreases by one when they are one circled and one gray marked vertices 
in the figure, except for the already-counted cases when both of the vertices are in the 
decagon-which is two times three, or six cases in all here, for each subdivision. We 
can observe that 
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• at the beginning of the chain only two 'grays' as shown in the figure exist; 

• when the y-th decagon from the end is subdivided there are 4 j — 1 'circles'. 

So we get 

n—1 
Z , 0 ( n ) - Z 7 , 5 ( n ) = 12n + 4 ^ ( 4 j - l ) + 2 ( 4 n - 1) = 2(2« + l ) 2 . (3.11) 

Similarly for a chain of zigzagging septagons (given that a dodecagon and two 
septagons differ by A(3, 3) = 35 in terms of Wiener indices) we have: 

37« 25 n 2 

Z I 2 ( n ) - Z 7 ( 2 n ) = ( 3 5 - 3 x 3 ) n + 5 j > y - 2 ) + 3 ( 5 n - l ) = 4 + — + — • 
j=\ z 1 

(3.12) 

It should be obvious now that any 'straight' (that is, zigzagging) polygonal chain 
made up of an even number of odd-sided polygons (or one in which the odd-sided 
polygons pair together nicely) can be handled in the same manner. 

Figure 11. 'Tacking on' an extra at one end of a zigzagging chain. 

To see that an odd number of odd-siders poses no particular problem either, we 
show that the Wiener index of a zigzagging septagon-chain can be found painlessly 
thus: consider the straight even chain 5 = 5 ^ 5 2, that is, n dodecagons followed 

n 
by an hexagon, and consider the increment in Wiener index when the trailing hex is 
changed to a septagon—that is, when an extra vertex is tacked onto the end of the 
chain. The difference is clearly 15 + 5rt(5n + 7), the first term being the difference 
between W(C6) = 27 and W ( C j ) = 42, and the second being the sum of distances 
between the tacked-on vertex and the vertices not in the original hex. It can then be 
seen that this tacked-on vertex does not change its distance to any point in the process 
of subdivision. Therefore we get Z-j(2n + 1) by subdivision of the chain S above and 
adding in the difference. 

Figure 12. A more general sort of subdivision. 

In the previously introduced procedure of subdivision, the most important relation 
is given by Equation 3.10. To make sure that we can handle any zigzagging chain, in 
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any arrangement of the polygons, we need to handle a split of a 2(m + n + fc)-gon 
into polygons with 2m + 1, 2(k + 1), and 2n + 1 sides, in that order. So we need 

A(m, n; k) = W(C2{m+n+k)) ~ W (((2m - 3) * ~ [ (2n - 3) 

, , 3m 2 m2 , 2 3« 
= - 1 + 2ifc - /T + —- - 2&m + ¿Tm 1- km1 H 2£n 

2 2 2 
n2 

+k2n - 2mn + 2kmn + m2n - — + kn2 + mn2. (3.13) 

One can see that setting k = 0 reduces to Equation 3.10, furthermore having more 
than one even-sided polygon between the two odd-sided ones present no problem 
because one can subdivide an even-sided polygon quite easily with the method of the 
previous section. 

Example 4 (Repeating straight chain). Suppose that we wish to calculate 25,6,7(n). 
From the above, we start with a chain of n straight quadradecagons which has Wiener 
index 

Z14(n) = (2 n + l)(6n + l)(12n + 1) + 70n. 

The difference for each subdivision in the 14-gon itself is A(2, 3,2) = 68. For the 
division with j 14-gons left the 'circles' number 6j — 1, and there are always six grays 
(except for 4 at the beginning). Ergo, we have 

n-1 
Zi4(n) - Z1A5{n) = (68 - 5 x 4)n + 6 ^ ( 6 ; - 1) + 4(6n - 1) 

7 = 1 

= 18n 2 +48n + 2. 

Hence 
•Z7,6,5(/j) = - 1 + 4 2 n + 90 n2 + 144 n3 . (3.14) 

4. Wiener indices of generic polygonal chains 

Having found a standard Wiener index against which to calculate deviations, we will 
proceed in a similar fashion to Section 2. However there is one essential difference, 
viz: when handling even motley chains, every vertex in a chain was either closer to 
one or of its end-vertices (marked ' + ' and '—') or the other, as depicted by the gray 
and black dots in Figure 6. Such is not the case when dealing with odd-sided polygons 
since some (marked as white dots in following 4 figures) may be equi-distant to both 
end-vertices. More precisely: 

> 
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Lemma 3. Marking the upper and lower end-vertices of a motley chain as u+ and 

u- and represent the chain as S = | " ' J (with the a\,b\ side next to the 

end-vertices). Define di = a, — ft,, e, = a, + b, + 2, and where applicable i the 
smallest i for which di ^ 0. Further denote by S+, S_, So the set of non-end vertices 
closer to u+, closer to U-, and equidistant respectively.. Then when di > 0 (otherwise 
just switch the + 's and — 's): 

• If di > 2, (Figure 13), then 

1 1 

. 7 = 1 J 
, |5o| = (ei mod 2), |S_| = |S+| + E ej. 

j=l+1 

e -

Figure 13. A turn to the right, same as the even-only case. 

• If dt = 1, then |S+| = |_[(E;=i ej) ~ l ] /2J - and furthermore: 

• ifdj = 0 orl, Vi > I (Figure 14, a straight chain), then: 

I-Sol = ei 
j=i+1 

, 15-1 = M 

Figure 14. A zigzagging chain and its vertices. 

• Suppose dm > 2, where m = min(i|d,- Oorl} (Figure 15), then: 

1 
\So\ = 3 + E 

^ j=i+l J 
, 15-1 = lift-). + E V 

j=m+1 
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Figure 15. Here the equal-distance portion is transient. 

• as above, but if dm < 0 (Figure 16), then: 

\So\ = + Y, eJ> i 5 - i = 
j=m+1 J=1 

G -

o - o -

O-O—o— 

Figure 16. Here most vertices are equidistant to the ends. 

If there is no £, chain is straight even, vertices split evenly between 5+ and S— 

Proof. Pretty much by inspection. • 

With Lemma 3 under our belt, we can proceed to the following lemma which 
we will need to derive the Wiener index of a generic motley chain from a straight 
chain. Before that, however, we need to define our notations. Given any motley chain 

S = ( V 7< T >. we can find a cha,„ S„ = ( - — • • \ which U ^ or 
a\ ai ... an 

,b\ bï ... bn 

X\ X2 • • • Xfi 
y\ yi • • • yn / 

zigzagging according to Definition 4, and satisfying + >>, = a, +i>,, V i. The stages 

of straightening Si = ( f 1 f 2 V ''' Xn ) will be defined in direct analogy 6 J \bi b2 ... bj yj+l ... yn I 

to the notations used in Section 2 (one example shown in Figure 17). 
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|/?+| = 5; R0 approaches ;7"_ 

R 1 = 10- but recedes away from T+i; 

v f w e consider this "rotation." Note 

that this changes pe from (j) to (,). 

Figure 17. pe, a 'stage of the straightening' of a generic motley chain! 

Lemma 4 (Rotation at one polygon). If we mark the two remaining chains to be R 
and T, the latter being straight (zigzagging), then we need only the following to 
calculate the difference in Wiener indices between straight motley chain and general 
positions. Partition R into three parts R+, R-, and Ro and T ditto as in the previous 
lemma, and: 
• If Xi — yt and Xi — A, > 0 (as demonstrated in Figure 17—switch + and — for 

the opposite case) then 

W ( S i - I ) - W(Si) = (Xi - A,)|Â||7Ï - ( I Ä O I I T L I + | K _ | | 7 b | + 2 | / ? _ | | r _ | ) . 

• If Xi — yi = Xi — at = 1 (Figure 18), then 

W ( 5 , _ i ) - m S i ) = ( I Ä + I I 7+ I + | Ä 0 | | r + | + | j ? + | | 7 b | ) -

( l * _ l i r o i + | Ä - | | r 0 | + | Ä - | | r _ | ) . 

Ro gets away from T-, but nearer T+; 

R- gets further from T0 and T-; 

Figure 18. 'Buckling' between bearing up and bearing down! 
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• If xi — yi = 1, ai — xi > 0, then 

W(Si-i) -W(Si) = (cii - Xi)\R\\T\. 

Lemma 3 and Lemma 4 are basically sufficient to calculate, by hand if necessary 
(although somewhat cumbersome), the Wiener number of any motley chain. For 
chains in which deviations from the straight is not too numerous, the process is quite 
straightforward, and we will now give a concrete example. 

Example 5. We will do a very simple illustration with the motley chain in Figure 1 
and its straightened form, which can be represented as 

_ L 3 2 1 0 0 , 1 ¡0 2 2 1 0 1 1 \ 
5 = \ 1 1 1 2 0 I I ' a n d 5 o = \ l 2 1 2 0 0 1 / • 

6 dots, 4 inside 12-gon 

5 dots, 3 inside 

Figure 19. The straightened chain. 

So, before the subdivisions are drawn into So, we have an even motley chain of length 
14, made up of an hexodecagon, a dodecagon, and a hexagon. Equation 2.5 gives its 
Wiener index as ±(15 x 17 x 29) + 2((*) + $ + g ) ) = 2619. 
The hexodecagon subdivided into a pen-
tagon, an octagon, and a septagon. makes 
a difference of A(2, 3, 3) = 105; the extra 
difference between rows is 5 x 7 = 35, for 
140 total. The dodecagon subdivided into a 
septagon, a tetragon, and a pentagon, make 
a difference of A(3, 2, 1) = 39; the extra 
difference comes to 6 x 5 — 4 x 3 = 18, 
for a total of 57. Finally W(S) = W(S 6 ) 
is found via: 

VV(Sb) = 2619 - 140 - 57 = 2422, 

W(S2) = W(S0) - 43 = 2379, 

W ( S ) = W(S 2 ) - 12 = 2367. 

5. Discussion 

So far as we know, this is the first attempt on systemic calculation of Wiener indices 
of arbitrary polygonal chains. Perceptive readers should have by now realised that 

i 1 2 3 4 5 6 7 
Xi 0 2 2 1 0 1 1 
yi 1 2 1 2 0 0 1 
e\ 3 6 5 5 2 3 4 
\T-\ 9 2 4 2 
\To\ 8 6 3 0 
\T+\ 2 6 2 2 
at 0 3 2 1 0 0 1 
bi 1 1 1 2 0 1 1 
\R-\ 1 6 2 3 

1 0 4 9 
1 3 8 9 
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even though Sections 3 and 4 are mostly in examples, the procedure thus outlined 
actually contains a generally applicable algorithm which takes considerably less actual 
computation time than a brute-force recursion approach—even though a complete 
description would be tedious and too long in view of space limitations. 

The eagle-eyed reader would also have spotted the fact that despite the original 
'chemical' definition of 'catacondensed' polygonal chains (as used in [16] and [39]) 
not allowing vertices of degree 4, but the contents of this article apply to them with 
equal force. To be quite precise, they correspond to motley chains that have some of 
the a, or being — 1, but not both in a pair at the same time (since the smallest polygon 
that is meaningful is the triangle). Most formulas in the text apply with undiminished 
validity! 
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